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JX is concentrated at the center of the conductor so that approximation of the function H[z), we arrive, after the

its separation from the boundary is t/2. The integral evaluation of some standard integrals, at the result

converges as a result and assumes the value

‘$,I(X,,X,)= &~[2)(k/$)” ~zxi (B8)
—,–

which is independent of t provided that t<<A.

Finally, when a current density .lP(x) is unbounded on

a segment, as is the case for ~,(x) at the edges of the

conducting strip, the validity of its approximation by a

constant value should be examined. The two integrals

which concern us then are S=:,, and S%, ~ evaluated on an

edge segment. Under the approximation of the constant

current density, the first integral has the finite value given

in (B6) while the second integral vanishes as in (B4). We

may assume that the error introduced in the first integral

is smaller than its true value and can thus be neglected.

The error introduced i the second integral, however, is

equal to its true value k d may not, therefore, be ignored.

To evaluate S&~ on ‘bn edge segment, we assume a

current density .lZ that satisfies the edge condition. We

may thus write

JZ(X)=;[A(;-X)]-’’2]ZN. (B9)

Using (B9) in (B 1) and applying the small argument

%!,(xN,x.)= -j% ~FI.N (B1O)

where

F=jfi ~,A‘ln(3–2ti). (Bll)
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Generalized Spectral Domain Method for
Multiconductor Printed Lines and

Its Application to Turnable
Suspended Microstrips

TATSUO ITOH , SENIOR MEMBER, IEEE

Abstract-An efficient method is developed for obtahdng propagation I. INTRODUCTION
characteristics of microstripfine type structures in which a number of
conductors are located on various interfaces. Specffk computations have T HE SPECTRAL domain technique developed by

been carried ont for suspended microstriplfne structures with tuafng con- Itoh and Mittra has been applied to a number of
dnctive septurns. A number of data useful for design are included. microstripline structures [1], [2]. It is an efficient numeri-

cal technique having several advantages over many other
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applied only to the structures in which center conductors
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Fig. 1. Cross section of shielded multiconductor printed line.
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Fig. 2. Suspended microstripline with septums.

This paper reports a modification of the spectral

domain technique which can handle the structures in

which a number of conductors are placed on various

interfaces (Fig. 1). The original version is not capable of

solving such structures. Also, formulation in this paper is

quite general and requires no structural symmetry to exist.

Before discussing the technique, we will describe the

motivation of the present work.

Recently, several attempts have been made to increase

design flexibility of microwave integrated circuit struc-

tures by introducing additional conductors on interfaces

different from the one on which the original strips are

located. Aikawa reported the use of grounded septums

located on the lower side of the substrate in the coupled

suspended line [5] (Fig. 2). He has successfully developed

tight couplers by adjusting the width of septums without

which such couplers were extremely difficult to realize.

Such composite structures are difficult to analyze, and the

design procedure based on slowly convergent numerical

methods is prohibitively expensive because there are more

structural parameters to be adjusted than in conventional

structures. Hence, development of an efficient analysis

method is needed.

The principal purpose of the paper is to present a
formulation for general structures (Fig. 1). Numerical

results are presented for the suspended microstrip with

two grounded septums. Most of the data are for the single

strip case (S= O in Fig. 2), as extensive data for coupled

lines will be reported elsewhere.

II. FORMULATION

In this paper, we restrict ourselves to cases where the

quasi-TEM approximation is valid, although the present

method can readily be extended to a more rigorous dis-

persion analysis in which wave equations for inhomoge-

neous structures are treated. Under the quasi-TEM

assumption, we only need to solve Laplace’s equation in

the cross section subject to appropriate boundary condi-

tions. Instead of solving such a problem directly in the xy

coordinate, we introduce the discrete Fourier transform of

the potential

~(n,y) = JL@(x,y) sin ( ~x)dx, n=l,2,. ... co
o

(1)

so that the partial differential equation (Poisson’s equa-

tion) can be transformed to an ordinary differential equa-

tion

[$-(5Y]JY)=0 (2)

In (1) and (2) and throughout the rest of the paper n is the

discrete Fourier transform variable. The solution of (2) in

the ith layer is

&i(n,.y) =~i(n) sinh ~Y + Bi(n) cosh ~Y (3)

~i must be zero at both bottom and top of the shield case.

In addition, when the conditions at the ith interface are

Fourier transformed, we obtain

;Jn,~l) =;,+ l(njY,) (4a)

?Z(n,Yi) = Jvi ‘+oi (4b)

where @i(n) is the transform-of unknown charge distribu-

tions at the ith interface. @vi is the transform of given

potentials on the strips at the ith interface, whereas ~oi is

that of unknown potential distributions outside strips at

the ith interface. Next, (3) is substituted into (4) for each i,

and Al’s and Bi’s are eliminated. After mathematical de-

rivation for this process is completed, one obtains the

following co~pled algebraic equations:

f ‘~(n)fij(n)=&i+&i> i=l,2,. ... N (5)
jcl

where ~U’s are known. When there is no strip at the jth

surface, the jth equation vanishes and the jth term on the

left-hand side becomes zero as 61 is zero for such j.

Notice that (5) is an N X N matrix equation in contrast
to a set of N X N coupled integral equations which would

appear in conventional space domain formulations that

contain convolution integrals. dti is actually the transform

of the Green’s function GU which determines the potential

at the ith interface due to the unit charge at the jth
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interface. Also (5) contains a total of 2ZV unknown, ~j and

~Oi. However, N unknowns, &i, can be eliminated in the

solution process and one can solve (5) only for N un-

known 2’s. To this end we apply Galerkin’s method to (5).

First we expand fij in the following manner:

where SJ is the number of strips at the jth interface. ~~ is

the transform of an assumed charge distribution on the

sth strip at the Jh interface. Specific forms used for &

will be described later.

Substituting (6) into (5) and taking the inner products

of the resulting equations with fii;, q~ = 1,. . “, P, a}d o =
N

1,””. , Si, one obtains the following ~ ~.y x ~ 5J
j=] j=l

matrix equations for ~j:

N s, P, i=l,2,. ... N

2 s sK;(i,j)c;= Y;(i)o=L” “ “ ,s, (7)
,=l~=lp=l q=l,. ... pi

where

= 5 i%(divz(o (9)
~=1

The second infinite summation in (9) vanishes because by

virtue of Parseval’s relation

In (10), we used the fact that the assumed charge distribu-

tion Plj (the inverse transform of p;) is zero when x is
outside the conductor whereas @oI(x) (the unknown poten-

tial) is zero on the conductor. Since &vi(n) is the transform

of given potential on the conductor, Y:(i) is known. It is

also clear that KJ(i,j) is also a known quantity. Hence

K; and Y; can be computed quite efficiently once ~~ is

selected. Once ~~’s are obtained by solving (7), the charge

distribution on the sth strip at thejth interface can readily
be computed from

where ~~ is the assumed charge distribution from which

fi: was analytically derived.

Although (7) may seem complicated, in most cases it

results in small size matrix, because for a reasonably

accurate answer PJ only needs to be unity or at most two.

For instance, when only one strip each is located at two

different interfaces (~= 1,N = 2), the size of the matrix is

either 2 x 2 or 4 X 4.

Before concluding this section, let us summarize the

procedure for solution.

1) Select a set of functions, pj~(x), p = 1,2,..., ~, which

individually reasonably represents the charge distribution

on the sth strip at thejth interface. Note that they must be

analytically Fourier transformable. For instance, in the

computation for the suspended rnicrostrip with septums,

we have let P,= 1 and chosen a Maxwell function for the

charge on the strip and one half of a Maxwell function for

the charge on the septum. These functions incorporate a

correct singular behavior of the charge distributions at the

edges.

2) Take the discrete Fourier transform of p;(x) via (1)

and obtain ~j~(n) analytically. In the example, these func-

tions are expressed in terms of Bessel functions,

3) Compute numerically K~{i,j) and Y:(i) via (8) and

(9) as all quantities including @vi are known analytically.
4) Solve (7) for qj and obtain Pj(x) from (11).

III. RESULTS FOR THE SUSPENDED MICROSTRIPS

WITH SEPTUMS

Numerical results were obtained for a single suspended

microstrip with septums (S= O in Fig. 2). In such struc-

tures, ~ti’s become

(12a)

&= G2, = --!-- 1

det sifi ~~h
(12b)

G22=

det =

[
& coth ~.h + : coth /&

r 1
[

GOin E,+ coth I&h coth i~b

(12C)

where ~~ = n~/2L. As assumed charge distributions, we

have chosen the ones having square integrable singularity

at edges of strips.

First the accuracy of the method was checked by com-

paring our results with those reported by Aikawa [5] who

used a finite difference technique. As shown in Fig. 3, the

agreement is quite satisfactory.

A number of data are presented here for a single

suspended line with symmetric septums. Figs. 4 and 5

present characteristic impedance and normalized guide

wavelength, respectively, versus the width of the strip for

a number of septum widths. It is seen from Fig. 5 that for

large a, the guide wavelength Ag becomes smaller as the

strip width is increased. On the other hand, when a is

reduced & takes a maximum at some W. The reason for

this phenomenon may be as follows. When a is large, the
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Fig. 3. Comparison of computed characteristic impedances with those
bv Aikawa. c. =2.4, S=0.335 mm. W= 1.48 mm. L= 16.4 mm. t = 16.4
mm, h= 1.64’mm, ~=8.2 mm.
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Fig. 4. Characteristic impedance versus the width of the strip. c,= 3.8,
S/h=O, L/h=b/h= t/h= 10.

effect of the air portion (region 1) to the field distribution

is reduced. As W is increased, most of the flux lies in the

dielectric region, causing X. to be small. For small a, &

resembles that of the conventional suspended line. As W

is increased, the effect of the air becomes more important

and & increases until the coupling between the strip and

the septums becomes dominant. After such a situation a

larger amount of flux moves into the dielectric region and

A. becomes smaller a.zain.

0 2 ‘1 6 8
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Fig. 5. Normalized guide wavelength versus the width of the strip.
6,=3.8, S/h=O, L/h= b/h= t/h= 10.
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Fig. 6. Characteristic impedance versus the width of the septum.
S/h=O, W/h= 1.2, L/h= b/h= t/h= 10.
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Fig, 6 shows characteristic impedance versus the sep-

tum width a for three different dielectric materials. The

strip width W is fixed. It is clear that Z can be adjusted

over a wide range by varying a. This feature is quite

attractive in MIC application because in suspended line

the fabrication of low impedance lines is often difficult

[6].

IV. CONCLUSIONS

We presented a general method, based on spectral

domain approach, for multiconductor printed lines for

MIC. Numerical examples are given for the suspended

microstrip with grounded septums. This structure is con-

sidered useful for MIC application, because propagation

characteristics can be adjusted by septums which add one

more degree of freedom in the design.

The numerical method presented here is applicable to a

wide range of problems and has several advantageous

features: 1) the method is numerically efficient, 2) no

convolution integrals are involved, and 3) the size of the

matrix is quite small.
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Simulation Study of Electronically Scannable
Antennas and Tunable Filters Integrated
in a Quasi-Planar Dielectric Waveguide

TATSUO ITOH, SENIOR MEMBER, IEEE, N ALBERT S. HEBERT, MEMBER, IEEE

Abstract-Prefiiary studies on electronically scannable leaky-wave

antennas integrated in a dielectric waveguide are reported. Electronic scan
is simulated by a smafl mechanical motion from which the relation between

the scan angle and the necessary change in the dielectric constant can be
derived. The work is also applicable to ebxtronicafly tunable bandstop
filters.

I. INTRODUCTION

T HIS PAPER presents an economical method useful

as a preliminary study for the design of electronically

scannable antennas and tunable filters in dielectric
millimeter-wave integrated circuits. The results obtained

by the present study can be helpful in establishing the

requirement for the material in which the dielectric con-
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U.S. Army Research Office Grant DAAG-29-77-G-0220.

T. Itoh was with the Department of Electrical En@eering, University
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Electrical Engineering, The University of Texas at Austin, Austin, TX
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A. S. Hebert is with the Department of Electrical Engineering, Univer-
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stant can be varied electronically. In addition, the method

itself can be used to adjust the beam direction or scan the

beam if speed is not of consideration.

A number of dielectric waveguides have been proposed

for developing new types of millimeter-wave integrated

circuits [ 1]–[3] which resemble optical integrated circuits.

Recently, grating structures created in the dielectric wave-

guides have been used as leaky-wave antennas and band-

stop filters [4]. The main-beam direction and the stopband

are determined from the electrical length of the unit cell

of gratings. In the leaky-wave antenna in [4], the beam
was steered by changing the operating frequency. How-

ever, in actual application, often one would like to keep

the frequency fixed and still need to steer the beam. Also,

in the filter in [4], the stopband cannot be altered once the

gratings are fabricated.

These problems may be overcome by incorporating an

electronic phase shifter in the structure, which changes the

electrical length for a fixed frequency. Recently, the use of

a p-i-n layer incorporated in a submillimeter-wave dielec-

tric waveguide was suggested as an electronic phase
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