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J, is concentrated at the center of the conductor so that
its separation from the boundary is #/2. The integral
converges as a result and assumes the value
a2
1) 3
which is independent of ¢ provided that r<A.

Finally, when a current density Jg(x) is unbounded on
a segment, as is the case for J,(x) at the edges of the
conducting strip, the validity of its approximation by a
constant value should be examined. The two integrals
which concern us then are Sy, ; and Sy, | evaluated on an
edge segment. Under the approximation of the constant
current density, the first integral has the finite value given
in (B6) while the second integral vanishes as in (B4). We
may assume that the error introduced in the first integral
is smaller than its true value and can thus be neglected.
The error introduced ip the second integral, however, is
equal to its true value and may not, therefore, be ignored.
To evaluate S;’;'l on ‘an edge segment, we assume a
current density J, that satisfies the edge condition. We
may thus write

J,(x)= % [A(% - x)]_IﬂIzN.

Using (B9) in (B1) and applying the small argument

1

k
Sxd:v, 1(x3 ;) = Z;:; Hl(z)(kz xi (B8)

(B9)

Generalized Spectral

983

approximation of the function H{®, we arrive, after the
evaluation of some standard integrals, at the result

. kzkt 1

Sg,l(xNPxN) ==J doe 2 FLy (B10)
where
F=j\/§gl%6—§ln(3—2\/7). (B11)
t
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Domain Method for

Multiconductor Printed Lines and
Its Application to Turnable
Suspended Microstrips

TATSUO ITOH , SENIOR MEMBER, IEEE

Abstract—An efficient method is developed for obtaining propagation
characteristics of microstripline type structures in which a number of
conductors are located on various interfaces. Specific computations have
been carried out for suspended microstripline structures with tuning con-
ductive septums. A number of data useful for design are included.
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I. INTRODUCTION

HE SPECTRAL domain technique developed by

Itoh and Mittra has been applied to a number of
microstripline structures [1], [2]. It is an efficient numeri-
cal technique having several advantages over many other
methods [3], [4]. However, to date, this technique has been
applied only to the structures in which center conductors
(strips) are located on one of the dielectric interfaces, e.g.,
the air-substrate interface.
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Fig. 2. Suspended microstripline with septums.

This paper reports a modification of the spectral
domain technique which can handle the structures in
which a number of conductors are placed on various
interfaces (Fig. 1). The original version is not capable of
solving such structures. Also, formulation in this paper is
quite general and requires no structural symmetry to exist.
Before discussing the technique, we will describe the
motivation of the present work.

Recently, several attempts have been made to increase
design flexibility of microwave integrated circuit struc-
tures by introducing additional conductors on interfaces
different from the one on which the original strips are
located. Aikawa reported the use of grounded septums
located on the lower side of the substrate in the coupled
suspended line [5] (Fig. 2). He has successfully developed
tight couplers by adjusting the width of septums without
which such couplers were extremely difficult to realize.
Such composite structures are difficult to analyze, and the
design procedure based on slowly convergent numerical
methods is prohibitively expensive because there are more
structural parameters to be adjusted than in conventional
structures. Hence, development of an efficient analysis
method is needed.

The principal purpose of the paper is to present a
formulation for general structures (Fig. 1). Numerical
results are presented for the suspended microstrip with
two grounded septums. Most of the data are for the single
strip case (S'=0 in Fig. 2), as extensive data for coupled
lines will be reported elsewhere.
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II. FORMULATION

In this paper, we restrict ourselves to cases where the
quasi-TEM approximation is valid, although the present
method can readily be extended to a more rigorous dis-
persion analysis in which wave equations for inhomoge-
neous structures are treated. Under the quasi-TEM
assumption, we only need to solve Laplace’s equation in
the cross section subject to appropriate boundary condi-
tions. Instead of solving such a problem directly in the xy
coordinate, we introduce the discrete Fourier transform of
the potential

J)(n,y)=j(;L¢(x,y) sin(;—Zx)dx, n=12,---,0

(1)
so that the partial differential equation (Poisson’s equa-
tion) can be transformed to an ordinary differential equa-
tion 1!

d? ni \2
L (5) @
In (1) and (2) and throughout the rest of the paper n is the

discrete Fourier transform variable. The solution of (2) in
the ith layer is

<E>,.(n,y) = A,(n) sinh ;—Zy + B,(n) cosh

3(ry) =0.

nw
DY R4 3
&, must be zero at both bottom and top of the shield case.

In addition, when the conditions at the ith interface are
Fourier transformed, we obtain

&’z(n’yx) =€51+1(n9y1) (43.)
‘3’;(”,)@) =J)Vi +‘Z’Oi (4b)

9, _ i‘z’,_ __ pn)
£+ dy e, €; dy y=y,_ - _.8—0_ (40)

where p,(n) is the transform of unknown charge distribu-
tions at the ith interface. ¢, is the transform of given
potentials on the strips at the ith interface, whereas ¢y, is
that of unknown potential distributions outside strips at
the ith interface. Next, (3) is substituted into (4) for each i,
and A4,’s and B;’s are eliminated. After mathematical de-
rivation for this process is completed, one obtains the
following coypled algebraic equations:

N o~ ~ ~
2 sz(”)ﬁj(”)=¢w+¢oia i=12,---,N (5)
j=1

where G~,.j’s are known. When there is no strip at the jth
surface, the jth equation vanishes and the jth term on the
left-hand side becomes zero as f, is zero for such j.
Notice that (5) is an N X N matrix equation in contrast
to a set of N X N coupled integral equations which would
appear in conventional space domain formulations that
contain convolution integrals. G; is actually the transform
of the Green’s function G; which determines the potential
at the ith interface due to the unit charge at the jth
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interface. Also (5) contains a total of 2N unknown, pj and
o However, N unknowns, ¢, can be eliminated in the
solution process and one can solve (5) only for N un-
known p;’s. To this end we apply Galerkin’s method to (5).
First we expand p; in the following manner:

p(n)= E Z cipi(n)

s=1p=1

(6)

where §; is the number of strips at the jth interface. p,, is
the transform of an assumed charge distribution on the
sth strip at the jth interface. Specific forms used for g,
will be described later.

Substituting (6) into (5) and taking the inner products
of the resulting equations with g, gy = IN -,P and v=

I

1,-+-,S,, one obtains the following 2, P;S;X 2 P.S;
j=1
matrix equations for ¢,

N S P i=12,---,N
> 2 X Kppg=r@o=L-5  (7)
J=1s=1p=1 q=1}"',P1
where
Ky(if)= 3 pa(mGy(n, ®)
Y;(i)= 21 f’i‘é(”)[‘%l/i(”)*'éo;'(n)]
= 2 bi(m)dy(n). ©)

n=1

The second infinite summation in (9) vanishes because by
virtue of Parseval’s relation

0 o . _ 1 L v _
nglpiq(”)%i(”)—zr‘j(; Piq(x)¢0i(x)dx‘0- (10)

In (10), we used the fact that the assumed charge distribu-
tion pg (the inverse transform of p7) is zero when x is
outside the conductor whereas ¢,(x) (the unknown poten-
tial) is zero on the conductor. Since ¢,,(n) is the transform
of given potential on the conductor, Y;(i) is known. It is
also clear that K j(i,j) is also a known quantity. Hence
K, and Y; can be computed quite efficiently once p,, is
selected. Once c;,’s are obtained by solving (7), the charge
distribution on the sth strip at the jth interface can readily
be computed from

n Mcu

s,
B(9= 3 3 ey (i

where p; is the assumed charge distribution from which
p, was analytically derived.

Although (7) may seem complicated, in most cases it
results in small size matrix, because for a reasonably
accurate answer P; only needs to be unity or at most two.
For instance, when only one strip each is located at two
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different interfaces (S, =1, N=2), the size of the matrix is
either 2X2 or 4X4.

Before concluding this section, let us summarize the
procedure for solution.

1) Select a set of functions, p;(x), p=1,2,---,P, which
individually reasonably represents the charge distribution
on the sth strip at the jth interface. Note that they must be
analytically Fourier transformable. For instance, in the
computation for the suspended microstrip with septums,
we have let P =1 and chosen a Maxwell function for the
charge on the strip and one half of a Maxwell function for
the charge on the septum. These functions incorporate a
correct singular behavior of the charge distributions at the
edges.

2) Take the discrete Fourier transform of p(x) via (1)
and obtain g, (n) analytically. In the example, these func-
tions are expressed in terms of Bessel functions.

3) Compute numerically K(7,j) and Y;'(i) via (8) and
(9) as all quantities including ¢,, are known analytically.

4) Solve (7) for ¢;, and obtain p/(x) from (11).

III. RESULTS FOR THE SUSPENDED MICROSTRIPS

WITH SEPTUMS

Numerical results were obtained for a single suspended
microstrip with septums (S=0 in Fig. 2). In such struc-
tures, G,’s become

= 1 ~ 1 A

G, = ot [coth k,h+ P coth knb} (12a)
=~ 1 1

G=0n=g3 sinh Fh (12b)
Gp= é [coth Kb+ 1 coth kA,,t} (12¢)

det= Eyk,| €,+coth k h coth k:,b

+coth Ent( coth k,h+ El coth k:,b)} (12d)

where k,=nm/2L. As assumed charge distributions, we
have chosen the ones having square integrable singularity
at edges of strips.

First the accuracy of the method was checked by com-
paring our results with those reported by Aikawa [5] who
used a finite difference technique. As shown in Fig. 3, the
agreement is quite satisfactory.

A number of data are presented here for a single
suspended line with symmetric septums. Figs. 4 and 5
present characteristic impedance and normalized guide
wavelength, respectively, versus the width of the strip for
a number of septum widths. It is seen from Fig. 5 that for
large a, the guide wavelength A, becomes smaller as the
strip width is increased. On the other hand, when a is
reduced A, takes a maximum at some W. The reason for

4
this phenomenon may be as follows. When a is large, the
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Fig. 3. Comparison of computed characteristic impedances with those
by Aikawa. ¢, =2.4, $§=0.335 mm, W=148 mm, L=16.4 mm, ¢t=16.4
mm, A= 1.64 mm, 5=8.2 mm.
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Fig. 4. Characteristic impedance versus the width of the strip. ¢, =3.8,
S/h=0,L/h=b/h=1t/h=10.

effect of the air portion (region 1) to the field distribution
is reduced. As W is increased, most of the flux lies in the
dielectric region, causing A, to be small. For small a, A,
resembles that of the conventional suspended line. As W
is increased, the effect of the air becomes more important
and A, increases until the coupling between the strip and
the septums becomes dominant. After such a situation a
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Fig. 5. Normalized guide wavelength versus the width of the strip.
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larger amount of flux moves into the dielectric region and Fig. 6. Characteristic impedance versus the width of the septum.

A, becomes smaller again.

S/h=0, W/h=12,L/h=b/h=1/h=10.
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Fig. 6 shows characteristic impedance versus the sep-
tum width a for three different dielectric materials. The
strip width W is fixed. It is clear that Z can be adjusted
over a wide range by varying a. This feature is quite
attractive in MIC application because in suspended line
the fabrication of low impedance lines is often difficult

[6].
IV. CONCLUSIONS

We presented a general method, based on spectral
domain approach, for multiconductor printed lines for
MIC. Numerical examples are given for the suspended
microstrip with grounded septums. This structure is con-
sidered useful for MIC application, because propagation
characteristics can be adjusted by septums which add one
more degree of freedom in the design.

The numerical method presented here is applicable to a
wide range of problems and has several advantageous

987

features: 1) the method is numerically efficient, 2) no
convolution integrals are involved, and 3) the size of the
matrix is quite small.
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Simulation Study of Electronically Scannable
Antennas and Tunable Filters Integrated
in a Quasi-Planar Dielectric Waveguide

TATSUO ITOH, SENIOR MEMBER, IEEE, AND ALBERT S. HEBERT, MEMBER, IEEE

Abstract—Preliminary studies on electronically scannable leaky-wave
antennas integrated in a dielectric waveguide are reported. Electronic scan
is simulated by a small mechanical motion from which the relation between
the scan angle and the necessary change in the dielectric constant can be
derived. The work is also applicable to electronically tunable bandstop
filters.

I. INTRODUCTION

HIS PAPER presents an economical method useful
as a preliminary study for the design of electronically
scannable antennas and tunable filters in dielectric
millimeter-wave integrated circuits. The results obtained
by the present study can be helpful in establishing the
requirement for the material in which the dielectric con-
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stant can be varied electronically. In addition, the method
itself can be used to adjust the beam direction or scan the
beam if speed is not of consideration.

A number of dielectric waveguides have been proposed
for developing new types of millimeter-wave integrated
circuits [1]-[3] which resemble optical integrated circuits.
Recently, grating structures created in the dielectric wave-
guides have been used as leaky-wave antennas and band-
stop filters [4]. The main-beam direction and the stopband
are determined from the electrical length of the unit cell
of gratings. In the leaky-wave antenna in [4], the beam
was steered by changing the operating frequency. How-
ever, in actual application, often one would like to keep
the frequency fixed and still need to steer the beam. Also,
in the filter in [4], the stopband cannot be altered once the
gratings are fabricated.

These problems may be overcome by incorporating an
electronic phase shifter in the structure, which changes the
electrical length for a fixed frequency. Recently, the use of
a p-i-n layer incorporated in a submillimeter-wave dielec-
tric waveguide was suggested as an electronic phase
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